Renewable dehydrogenase-based interfaces for bioelectronic applications.
نویسندگان
چکیده
Bioelectronic interfaces that establish electrical communication between redox enzymes and electrodes have potential applications as biosensors, biocatalytic reactors, and biological fuel cells. However, these interfaces contain labile components, including enzymes and cofactors, which have limited lifetimes and must be replaced periodically to allow long-term operation. Current methods to fabricate bioelectronic interfaces do not allow facile replacement of these components, thus limiting the useful lifetime of the interfaces. In this paper we describe a versatile new fabrication approach that binds the enzymes and cofactors using reversible ionic interactions. This approach allows the interface to be removed via a simple pH change and then replaced to fully regenerate the biocatalytic activity. The positively charged polyelectrolyte poly(ethylenimine) was used to ionically bond a dehydrogenase enzyme and its cofactor to a gold electrode that was functionalized with 3-mercaptopropionic acid and the electron mediator toluidine blue O. By reducing the pH, the surface-bound 3-mercaptopropionic acid was protonated, disrupting the ionic bonds and releasing the enzyme-modified polyelectrolyte. After neutralization, fresh enzyme and cofactor were bound, regenerating the bioelectronic interface. Cyclic voltammetry, chronoamperometry, constant potential amperometry, electrochemical impedance spectroscopy, and Fourier transform infrared spectroscopy analyses were used to characterize the bioelectronic interfaces. For the two enzymes tested (secondary alcohol dehydrogenase and sorbitol dehydrogenase) and their respective cofactors (beta-nicotinamide adenine dinucleotide phosphate and beta-nicotinamide adenine dinucleotide), the reconstituted interface exhibited a surface coverage, an electron-transfer coefficient, and a turnover rate similar to those of the original interface.
منابع مشابه
Interfacing nanomaterials for bioelectronic applications
The integration of nanomaterials as a bridge between the biological and electronic worlds has revolutionised understanding of how to generate functional bioelectronic devices and has opened up new horizons for the future of bioelectronics. The use of nanomaterials as a versatile interface in the area of bioelectronics offers many practical solutions and has recently emerged as a highly promisin...
متن کاملApplications of Nanomaterials in Electrochemical Enzyme Biosensors
A biosensor is defined as a kind of analytical device incorporating a biological material, a biologically derived material or a biomimic intimately associated with or integrated within a physicochemical transducer or transducing microsystem. Electrochemical biosensors incorporating enzymes with nanomaterials, which combine the recognition and catalytic properties of enzymes with the electronic ...
متن کاملEffect of TiO2 Nanofiber Density on Organic-Inorganic Based Hybrid Solar Cells (RESEARCH NOTE)
Abstract In this work, a comparative study of hybrid solar cells based on P3HT and TiO2 nanofibers was accomplished. Electrospinning, a low cost production method for large area nanofibrous films, was employed to fabricate the organic-inorganic hybrid solar cells based on poly (3-hexylthiophene) and TiO2 nanofibers. The performance of the hybrid solar cells was analyzed for four density levels ...
متن کاملGraphene field effect transistors for bioelectronic applications
The development of the future generation of neuroprosthetic devices will require the advancement of novel solid-state sensors with a further improvement in the signal detection capability, a superior stability in biological environments, and a more suitable compatibility with living tissue. Due to the maturity of Si technology, Si-based MOSFETs have been extensively used in previous decades for...
متن کاملDesign and Fabrication of Glucose/O2 Enzymatic Biofuel Cell
Enzyme-based biofuel cells (EBFCs) are systems that use a variety of organic compounds to produce electricity through oxido-reductase enzymes, such as oxidase or dehydrogenase as biocatalysts immobilized on electrodes. In this study, a single-chamber EBFC consisting of carbon electrodes that operating at ambient temperature in phosphate buffer, pH 7 is reported. The EBFC anode was based on gluc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 23 13 شماره
صفحات -
تاریخ انتشار 2007